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THE EIGENFUNCTION EXPANSION METHOD IN DYNAMIC ELECTROELASTICITY PROBLEMS* 

O.YU. ZHARII 

A general formulation is proposed for the eigenfunction expansion method 
(EEM) in non-stationary dynamic problems of electroelasticity. The 
ortogonality of the displacement eigenfunctions (EF) in the bulk of the 
body is proved. It is established that the solution for the displace- 
ments has the same form as in classical elasticity theory while the 
electric field potential contains, in addition to a series in 
non-orthogonal EF, an unrelated component determined from the solution 
of the Laplace equation for an anisotropic medium under mixed boundary 
conditions. The problem of the instantaneous electrical loading of a 
piezoceramic rod is examined as an example. The specific singularities 
reflected by the general method are analysed for electroelastic wave 
fields as compared with elastic fields. 

The comparatively rare use of the EEM /l, 2/ as compared with the integral transform 
method, say, is due to the complexity of seeking eigenfunctions in problems with mixed 
boundary conditions for bodies bounded by surfaces belonging to different coordinate families 
or with boundaries going to infinity. However, the solution can be obtained in the latter 
case by a passage to the limit from a finite to an infinite body /3/. Meanwhile the EEM also 
has a number of advantages over the integral transform method, among which is the physical 
clarity of the solution /3/. Certain general properties of the non-stationary wave field in 
semi-infinite elastic waveguides /4/ can be established successfully by using this method. 

1. The complete system of equations of motion of a piezoelectric medium /5, 6/ includes 
linear equations of state, stress equations of motion, electrostatics equations, and Cauchy 
relationships 

zij = C$L Sk2 - e,iJEk, 
s 

Dt = eizd$I + Elk El, (1.1) 
~ij, j + Fi - pui” = 0; D,, i = 0, -6s = --cp. k; Ekl = ‘/z bk,I + Ul,k) 

In these equations Tif is the mechanical stress tensor ski is the strain tensor, El 
is the electric field strength, Di is the electric induction vector, ui is the displacement 

vector, 9 is the electric potential c&a is the elastic constants tensor, measured in a 

constant electrical field, em is the piezomoduli tensor, efh is the dielectric permit- 
tivity tensor for constant strains, Pi is the bulk force vector, and p is the material 
density. The properties of the material constants tensors are described in /5/. The sub- 
script after the comma denotes differentiation with respect to the space coordinate. The 
Latin subscripts i, j, k, 1 run through the values 1, 2, 3 and the summation is over repeated 
subscripts. 

Eliminating all variables except ui and 3 from (1.11, we obtain a system of second- 
order partial differential equations 

C$kluk, rJ + ekiJ$.kJ + Fi - pui”= 0 

,CikGk,Ii - 8k’$,ki = 0 

(1.2) 

We examine the following initial-boundary value problem: it is required to find the 
solution of system (1.2) in a volume V with boundaries s = s, _t s, = s, + s, at each point 
of which one of the mechanical boundary conditions 
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and the electrical 

is given. 
The fi on the 

boundary conditions /5, 6/ 

* =-go (I, t), x E ‘% (1.4) 

niDi ZCZ ?Zi (eikiU&, l - &*,x) = IJ (X, t), 5 E S, 

right-hand sides of conditions (1.3) and (1.4) are given displacements, 
gi are external forces vectors, q0 is the given electric potential, (I is the known free 
charge density, and r = {xi} is the three-dimensional coordinate of the point. We note 

that, as a rule, the physically realizable electrical boundary conditions have a more particu- 
lar nature, namely: 40(s,t)=~v(t)(Y=1,2,...,l\i) on each of the iv electrodes comprising 
the surface S, while c=O on the non-electroded surface (S,). The general form of 
notation is used in the theoretical analysis because of its compactness. 

The solution of problem (1.2)-(1.4) is defined uniquely if initial conditions for the 
mechanical variables /6/ 

ni (x, 0) = %o (& ui. (z, 0) = Ui@ (z), z E v (1.5) 

are given in addition to the boundary conditions, where %I vi0 are known functions of the 
coordinates. 

Starting from the general idea of the EEM, we will examine the followng eigenvalue 
problem: it is required to find the values of the parameter Q2, for which the homogeneous 
boundary-value problem corresponding to (1.2)-(1.4) 

has the non-zero solutions Ui(x),Y(x). The electroefastic field Ui (s)e-i*f. Y (s)e-*et corre- 
sponds to free vibrations of the volume V under homogeneous mechanical and electrical boundary 
conditions. 

Assuming that there is an infinite set of eigenvalues a,,,% (m = 1,2, . ..). forming a dis- 
crete series (for a bounded volume), we denote the eigenfunctions found by Ujrn) (5), Y(m) (z). 
As in ordinary elasticity theory, the existence of an infinite series Q?n2 required verifi- 
cation in each specific case, i.e., substantially the solution of problem (1.6) and (1.7). 

The proof that the eigennumbers @ are real and positive largely repeats the reasoning 
carried out in 121 for the elastic case, They are based on the use of Gauss's theorem and 
the condition for the internal energy density of a piezoelectric medium W = 'i* (?ij&ij i- E*Dg) 
to be positive. 

TO set up the orthogonality of the EF corresponding to different eigenfrequencies 51, 
and Q,, we write the identity 

(C~~II1U~~~j + e,ijYI~~:!, Vl”’ - (C:~klU~~)(j $ e,ijYll~f) Uln” -~ 

(eiJQ$ - E$Y$)) Y@) - (Q..U~]~ - &Y~;;)Y(nQ + 

that obviously follows from (1.6). 
p (Q,2 - w,y Lp’ul’” = 0 

Integrating over V and using Gauss's theorem and the boundary conditions (1.7), we have 

(c2,,,2 - n,,y \ pup U’in’dV = 0 (W 

r-e., the vector displacements EF are orthogonal with 
The scalar EF of the electric potential Y(m) do not 
(1.8) and are not generally orthogonal. 

We will henceforth assume the displacement EF to 

weight p(z) in the bulk of the body. 
occur in the orthogonality relationship 

be orthonormalized 

thereby eliminating the arbitrary multiplies in both UI”’ and in Y(m). We note that the 

completeness of Vi”’ in V assumed later, just like the structure of the spectrum, will 

require special study in specific cases. 
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Having the EF set Ui"', Ycm), we will seek the solution of the initial-boundary value 

problem (1.2)-(1.5) in the form (the summation is between m=l and l?Z=oO everywhere 
below) 

ui = uiS(s,t) + XJ,!"'(I)p",(t), $= V(X,t) + ZY'"'(I) Pm@) (1.10) 

where UiSl +" is the solution of the "static" problem corresponding to problem (1.2)-(1.4) 
for Ui" G 0 while p,(t) are as yet unknown functions of time. 

The time enters as a parameter in the latter problem, which makes it much simpler com- 
pared with the original problem. Moreover, it will later be seen that a knowledge of explicit 
expressions for Uis> $’ is not necessary since they drop out of the final solution. 

The representations (1.10) satisfy the second of Eqs.tl.2) and the boundary conditions 
(1.3) and (1.4). Substituting (1.10) into the first equation 
of the first equation in (1.6) and the corresponding equation 

ZpU!m' (p,” f B,2p,) = - pul.. 

Multiplying by Ul"' and integrating over the volume V, 

find 

of (1.2), we obtain, by virtue 
in the "static" problem, 

taking (1.9) into account, we 

pm” + Q2,‘p, = Qm" ft), m = 1,2, . . . (1.11) 

Q, (4 = - j pu: (x, t) ut”’ (x) dv (1.12) 
v 

The general solution of (1.11) has the form 

sin61 t 
t 

%,(t) = !7,,(0)cosW + %7l'(O)+ - 9, 
s 
Q,(r)sinC&, (t - ~)da 

qrn (1) = ;m (t) - Q3, (t) 

(1.13) 

Substituting the first equation of (1.10) into the initial conditions (1.5), we have 

UiS (z, 0) + ZU!" (5) pm (0) = UiO (4 

U;” (2, 0) + S Uim’ (Z) Pm’ (0) E Vi0 (5) 

Multiplication by pUicn) (x) and integration over V yields 

q,(o) =Spui,,(~)~l""(+~ q,'(O)= ~~"io(W?%)d~ (1.14) 
Y V 

The functions of time q,(t) satisfy the equations 

am" + P,,,&, = -%,,2Q,,, (t) (1.L.) 

because of (1.11). 
The initial conditions for Qm(t) are determined by (1.14) and their explicit expressions 

follow from (1.13). 
If it is taken into account that in conformity with (1.12) the series with coefficients 

Qm (t) is the expansion of the vector function -+"(z, t) in the complete system Ul"') (x), 
the first expansion in (1.10) is written in the form 

IL; = ZUj"" (2) qrn (t) (1 .16) 

q,,,(t) = q,,, (0) cos Q,,t+ q,ll’ (0) ***k -t -& i O,,, (T) sin e,, (t - t) dz 
n, ‘I7 0 

(1.17) 

The functions Q,(t) introduced here are defined in terms of Qm (4 for which a 
representation is successfully obtained by means of simple but awkward calculations analogous 
to those performed earlier /2/ without using the "static" solution 

(1.18) 

s uimjgi (x, t) ds - s ni (eiklue;) - &Y$‘)) q. (x, t) dS + 
S2 s, 
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j Y% (2, t) as = - Qn~Q,,, (t) 
s. 

It follows from expansion (1.10) rewritten taking the functions qn(t) into account for 

the potential that here the "static" solution $" is not cancelled by the sum with coef- 

ficients Q,,,(t) in the general case. 
If, as holds in the majority of applied problems, the asymptotic estimate 

%n - c0nst.m. m--+ar (1.19) 

is valid for the eigenfrequencies 52, then the necessity to find 9' can be avoided. 
Let us represent 'Ip in the form 

4 = (P (r, t, + ZYylm) (5) 4m (t) 

cp = ++(s, t) + ZY(m) (r)Qm (t) = QX(Z, t) - X&-V(m) (2) CD, (b) 

(1.20) 

(1.21) 

and let us try to formulate an individual boundary-value problem for the new function rp. 

Substitution of the expansions (1.16) and (1.20) into the second equality of (1.2) yields 
the equation 

&:r(P,ki = 0, x E: v (1.22) 

To obtain the boundary conditions we note that by virtue of the prOpertieS of the fUnC- 

tions UiS, It", U&m), y(m) in the representations (1.10) and the combinations of their deriva- 
tives in (1.3) and (1.4) the limits of the sums equal the sums of the limits on appropriate 
parts of the boundary S. Comparing expressions (1.17) for qm and the coefficients of the 
series in (1.21) we see that the latter decrease as m--too not more slowly than Pm to, 
and consequently, a term-by-term passage to the limit is also possible in the series obtained 
by substituting (1.16) and (1.20) into (1.3) and (1.4). We hence find that the function cp 
should satisfy the boundary conditions 

4 = $0(r* t)* 5 e 8,; -nie$ $),r = o (J* t)7 X E S* (1.23) 

Therefore, the function V (G 8) is determined from the solution of the unrelated 
problem, namely, it satisfies the Laplace equation for an anisotropic medium (1.221 under the 
mixed boundary conditions (1.23). 

The general scheme of the EEM in dynamic electroelasticity problems can be represented 
in the following form. After having found the EF system Uicm), Y("') from the solution of 
problem (1.6) and (1.7), the functions (D,(t) are determined from (1.18). Then the functions 

5% @) are calculated from (1.17) and (1.14). The solution of the initial-boundary value 
problem (1.2)- (1.5) is represented by (1.16) and (1.20), where the boundary-value problem 
(1.22) and (1.23) should be solved to determine the unrelated potential rp(x,t). 

Comparing the scheme obtained with that which occurs in ordinary elasticity theory /2/, 
the deduction can be made that the "static" displacement uis drops completely out of the 
solution (1.16) in both cases. Part of the "static" solution still remains in expression 
(1.20) for the potential in the form of the function cp although the latter is determined 
from the solution of the simpler problem (1.22)-(1.231. The reason is that the complete system 
of electroelasticity Eqs.(l.lf uses a quasistatic approximation of Maxwell's equations, and, 
therefore, allows an instantaneous change in the electric field in the bulk of the material 
while displacement perturbations propagate at a finite velocity /6/. The function tp (s, t) 
again corresponds to a change in potential in the bulk not accompanied by changes in the 
displacement and strain fields. 

2. Specific singularities of the electroelastic wave fields as compared with the pure 
elastic fields and reflected by the general scheme of the eigenfunction method appear most 
clearly in problems on the instantaneous electrical loading (unloading) of piezoceramic bodies 
16-81 and are illustrated by the following example. 

A piezoceramic rod -h<z<h is polarized along the z axis. The one-dimensional 
equations of the piezoelectric effect have the form /6/ 

E~ = SSI~U~ -+ &EZ, D,= “aTEa + &a z (2.1) 

The complete system of dynamicelectroelasticity equations include, in addition to (2-l), 
the equation of motion, the electrostatics equations, and the Cauchy relationship 

We will consider the problem of the instantaneous electrical loading of the rod by the 
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potential difference 2V,. The boundary conditions for a mechanically free rod are 

'Ip=fV,, o,=o, 2=*/a 

the initial conditions are zero 

u, = 0, Uz. = 0, t = 0 

The solution of problem (2.1)-(2.4) by the method of Sect.1 has the form 

uz = - dss (I- k&) V,Za, sin xmz (1 - cos C&t) 

$ = V&’ - k&‘VoZam (sin xmz - zh-1 sin x,h) (I- cosIQ,f) 

a,,, = 2 {[(x,,h)a - km* (1 - k&)] sin x,h}‘, k& = d& (&nT sSE)-l 

(2.3) 

(2.4) 

(2.5) 

where k,,= is the longitudinal coefficient of electromechanical coupling x,,=Q ,c-1 are 

the roots of the transcendental equation 
ctg x,h = k,,= (x,h)-’ 

and e = [pssaE (1 - kS8z)]+z is the wave propagation velocity in the rod with open electrodes /6/. 
The system of eigenfunctions sin x,7, is orthogonal in (--h,h) /9/ and the estimate that 
agrees with (1.19) 

SZ,,=(m-_/2)nch-'+0(l), m-03 

holds for the eigenfrequencies. The component V+h” in the expression for $ is analogous 
to the function 'p of the general theory and is a solution of the unrelated problem 

P’p 
a~=O, -h<z<h; rp=&V,, z=th 

In the interests of a more detailed analysis of the structure 
find the solution of the same problem in the domain of the complex 
respect to time 

uzF(z,or)- - d,(l -k&V, (To*A)-'isin(ozc-1) 

QF(z, a)= V, (WA)-'i [zh-'cosoT - k382(afT-l sin (ozc-I)] 

A = cos wT - kBa (oT)-’ sin UT 

of expansion (2.5) we will 
Fourier transform with 

(2.6) 

here 

(UzF. If) = [ (uz, $l)ei”fdt 
0 

is the transform of the desired functions, T = hc-’ is the time of elastic wave passage over 
half the rod length. Calculation of the inversion of (2.6) by closing the contour of inte- 
gration in the inverse transformation formula 

(uz, $) -- (“n)-1 s (urr’,J.F)-P’dw, 6>U 
tb--m 

by a semicircle of large radius in the lower half-plane of the complex o-plane and appli- 
cation of residue theory results in exactly (2.5). However, simple formulas can be obtained 
for ui and p in any finite time interval by expanding 8-l in a power series in ,iCOT and 
term-by-term integration. Without going into details, elucidated in detail in /6/ for similar 
problems, we present the solution that holds in the time interval O<t<aT 

ui = -d,, (1 - k,,%) 1, [(i (t + zc-1 - T) - U (t - x-1 - T)] 

9 = I/&-‘H (1) ~ k,,2V, [c‘ (t ,- x-1 - T) - U (t - z<-l- T) - Z/L-‘U (t)] 

U (t) = (k&-'[exp (k$T-1) - I] H (t) 

(11 (t) is the Heaviside unit function). 
The displacements are non-zero up to the time t= T 

ing the endfaces, while the potential $ 
only in domains lzj>h-cct adjoin- 

does not equal zero even in the unperturbed wave 
motion domain Izl<h - ct. Besides the constant unrelated component 'p= Vozh-1li (t) it also has 

a time-varying addition k,,aVozh-lU(t) due to the piezoelectric effect. Therefore, the 
solution for the displacements consists just of the propagating wave, while the sum over the 
eigenfunctions of the electric potential contains non-wave as well as wave components. 

In the general case, the method of expansion in eigenmodes of vibration enables just one 
component of the non-wave electric field components to be extracted explicitly, the unrelated 
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potential cp. The component due to the piezoelectric effect and that also has an infinite 
propagation velocity, is not contained explicitly in the sum Y@) and is determined after 

solving problem (1.2)-(1.5). 
In conclusion, we note that the method described enables the problem to be solved for 

more complex electrical boundary conditions as compared with (1.4). In place of the values 
of the potentials on the electrodes in considering applied problems, the magnitudes are often 
given for the currents through them or the characteristics of the outer electrical loops. In 
these cases, unknown values of the potentials are introduced into the boundary conditions 
(1.4) and are then determined from the equations for the currents in the outer loops or the 
charge conservation conditions, 
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HYPERSIN~UlAR INTEGRALS IN PLANE PR~3LE~S OF THE THEORY OF ELASTICITY* 

A.M. LIN'KOV and S.G. MOGILEVSKAYA 

This Paper is devoted to the solution of plane problems of the theory of 
elasticity by the method of discontinuous displacement using finite-part 
integrals fFPIf + !hO different integral equations (a real one and a com- 
plex one) with FPI's are obtained for the plane of a body with cracks. 
This opens the way for using arbitrary approximations of displacement 
discontinuities. The article contains integral formulae for FPI's used 
in the approximation of displacement discontinuities by polynomials of 
any order for internal elements and by special functions accounting for 
the asymptotic behaviour for the boundary elements. Therefore, 
prerequisites for increasing the accuracy of computations are created. 
The results of numerical experiments carried out indicate that there is 
a sharp increase iby two orders of magnitude) in the accuracy of the 
solution of the crack problem in which the integral formulae in question 
are used. 
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